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The dynamical behavior of a system consisting of a �heavy� piston and two rectangular boxes, each con-
taining two hard disks and in contact with the piston, is studied based on a projection operator method for a
microcanonical ensemble. We derive a coupled set of nonlinear equations for slow variables of the system and
solve it to confirm that our theory with no adjustable parameters reproduces experimental results fairly well.
Some limitations of the theory are discussed from the viewpoint of the separation of slow and fast time scales
and ergodicity.
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I. INTRODUCTION

The dynamics of an adiabatic piston offers interesting
problems �1,2�, and recently it has gathered a lot of attention
in connection with both fundamentals and applications of
statistical mechanics. One considers that a cylinder with fi-
nite or infinite length is separated into two compartments by
a piston and each compartment is filled with gas particles. It
is supposed that the mass of the piston, M, is much larger
than that of a gas particle, m. Initially the piston is fixed by a
brake and the gas in the left �right� compartment is kept in
thermal equilibrium with the pressure pL �pR� and the tem-
perature TL �TR�. At a certain time, a brake is released and
our interest is in relaxation of the whole system, the piston
and gases, toward a total equilibrium state. This problem was
recently investigated by using various methods for various
gases, typically consisting of ideal �noninteracting� or hard-
core �or disk� particles. The Boltzmann equation �3,4� and
master equation �5,6� are employed for a piston interacting
with an ideal gas and hydrodynamic equation �7,8� and mo-
lecular dynamics simulations �9� are employed to study the
dynamics of a piston in hard disks.

In the case where the length of the cylinder is infinite with
pL= pR and TL�TR, the piston stationarily moves to a hotter
region. A stationary velocity of the piston can be obtained
from analysis of the Boltzmann equation �3,4�. This phenom-
enon can also be explained by other approaches. For in-
stance, a Fokker-Planck equation for the velocity V of the
piston has a stationary solution of the form �exp�−�st�V��
and the stationary velocity of the piston Vst��V exp�
−�st�V��dV is not equal to 0 �5�.

On the other hand, in the case where the length of the
cylinder is finite, relaxation to an equilibrium state is char-
acterized by two stages. The first stage is relaxation to a
mechanical equilibrium state, where pL= pR and TL�TR
�7,8,10�. In this process, molecular dynamics simulation
shows that the dynamics of the piston exhibits damped os-
cillatory motion. This motion is predicted for the piston in
contact with an ideal gas from a Liouville equation �10�. It
also comes from a hydrodynamic approach �7,8�. The second
stage, which is much slower than the first one, is relaxation
to thermal equilibrium of the whole system, where not only
pL= pR but also TL=TR. In this process, it is confirmed nu-
merically and theoretically that the piston moves to a hotter

region and conducts heat �9,11�. For a system consisting of a
piston and two hard-disk gases, one can see that the power
spectral density of the system in the total equilibrium state
has three peeks: i.e., two damped sound modes related to
oscillatory motion and a thermal mode related to slow relax-
ation at the second stage �12�.

It is also possible to derive an equation of motion, which
describes oscillatory behavior of a piston in a potential field,
in a system of finitely many noninteracting �13�. In the deri-
vation collisions between the piston and gas particles during
a time interval ��M /kBT, with � and kB denoting some dis-
placement of the piston and Boltzmann constant, respec-
tively, are considered and the limit �→0 is taken after M
→�. For the case of interacting gas particles, a similar equa-
tion of motion is also obtained by using an averaging method
�14�.

In most of the studies of the adiabatic piston problem,
each compartment contains many gas particles. However, it
is of interest to consider the case where each compartment
has a few particles since it can have close relations with the
foundation of statistical mechanics �15�, equilibrium statisti-
cal mechanical properties �16�, and some dynamical proper-
ties �17–19�. In this paper we consider a two-dimensional
rectangular box, which is separated by a piston into two
boxes each containing two hard disks. For a rectangular box
with two or three hard disks, the microcanonical partition
function, denoted by ZRB, is calculated exactly �20,21�. It is
noted that the pressure p calculated from ZRB has been com-
pared with the time-averaged pressure p̄ obtained from mo-
lecular dynamics simulations �20,21� and p= p̄ has been con-
firmed as a partial check on ergodicity of the system.

The fact that an exact partition function Z for our piston
problem is available also offers an interesting opportunity to
study dynamical behaviors such as relaxation of the system
�11,19�, and we pursue this possibility for our system. Under
the assumption that the phase-space distribution function
quickly or more precisely instantaneously relaxes to a non-
equilibrium microcanonical distribution characterized by a
set of slow variables—say, a—i.e., a quasiequilibrium
assumption—we derive a Fokker-Planck equation for the
slow variables by applying a projection operator method.
This Fokker-Planck equation is dependent on the equilibrium
distribution function of fast variables which is obtained from
Z. Moreover, we derive a set of nonlinear equations for slow
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variables from the Fokker-Planck equation and confirm that
these equations with energy conservation law reproduce re-
sults obtained from molecular dynamics simulations fairly
well.

At this point it is worthwhile to note that a quasi equilib-
rium assumption naturally leads to neglect of some dynami-
cal correlations and our theory is approximate �17� even if an
exact Z is available for a system. This situation is similar to
the one in the Boltzmann equation, which is approximate due
to the introduction of the hypothesis of molecular chaos,
even if one knows exact form for a differential cross section.

This paper is organized as follows. First we introduce the
model studied in this paper and investigate its equilibrium
properties under a microcanonical ensemble in Sec. II. In
Sec. III, we derive a Fokker-Planck equation for slow vari-
ables by using a projection operator method and a quasi
equilibrium assumption. Finally, in Sec. IV, we derive a set
of nonlinear equations from the Fokker-Planck equation by
neglecting a diffusion �or conduction� part. The nonlinear
equations are solved numerically to compare with molecular
dynamics simulations. The final section contains discussions
of the dynamics of the piston based on a mass-ratio expan-
sion and conclusions.

II. MODEL AND ITS EQUILIBRIUM PROPERTIES

The system which we study in this paper is depicted in
Fig. 1. The box with size Lx and Ly contains a piston with
mass M which separates the box into two boxes each with
two hard disks inside. We denote momentum and position of
the particle i �=1, . . . ,4� by p̂i and r̂i, respectively. Here it is
remarked that p̂i means that it is a dynamical variable and pi

is used to denote its value. The piston with momentum P̂ and

position X̂ can slide in the x direction. The Hamiltonian of
the system is thus

Ĥ = �
i=1,2

p̂i
2

2m
+ �

i=3,4

p̂i
2

2m
+

P̂2

2M
� ĤL + ĤR + ĤP. �1�.

When m�M it is considered that the set of variables â

��P̂ , X̂ , ĤL , ĤR� changes in time slowly compared with other
variables such as p̂i and we introduce a microscopic density

D̂�a,t;�� � �„â�t;�� − a…

= �„P̂�t� − P…�„X̂�t� − X…�„ĤL�t� − HL…�„ĤR�t�

− HR… .

where � represents a point in the 18-dimensional phase
space. Here â�t ;�� means that this is a function of both time
t and an initial phase �, similar to Heisenberg representation
in quantum mechanics. This point is detailed in the Appen-
dix.

First we consider for later convenience the equilibrium
distribution of a, which is given by a microcanonical en-

semble average of the microscopic density D̂�a , t=0;��
� D̂�a ;��—i.e., Deq�a�= 	Z�H�
−1�d�D̂�a ;����Ĥ−H�
����Ĥ−H�� with Z�H�=�d���Ĥ−H�. Denoting the �con-
figurational� partition function of the two hard disks in a box
of size �lx , ly� by Z2�lx , ly� �20�, we have

Deq�a� = feq�X�feq�P,HL,HR� , �2�

with �22�

feq�X� =
Z2�X,Ly�Z2�Lx − X,Ly�

Zc
. �3�

Here Zc is a normalization to ensure �dXfeq�X�=1.
The piston momentum distribution feq�P�=�dHLdHR

�feq�P ,HL ,HR� is simply given by

feq�P� =
�2mH − P2�3

 dP�2mH − P2�3

, �4�

where the integration in Eq. �4� is limited to the region
�2mH− P2��0. The distribution of the momentum px of a

hard disk—say, i=1—when ĤL=HL is similarly obtained as

feq�px�HL� =
�2mHL − �px�2�1/2

�m	HL�
. �5�

In Fig. 2, we compare Eqs. �3� and �4� with molecular dy-
namics simulations—i.e., long time average. In this paper, as
units of length and mass, the diameter d and mass m of a
hard disk are chosen, respectively, and the system in Fig. 2 is
characterized by H=18, M =100, Lx=15, and Ly =3.

Agreement between these distribution functions from the
microcanonical ensemble and molecular dynamics simula-
tions gives partial support to the ergodicity of our system.

Equipartition laws—i.e., �P̂2 / �2M��=H /9 and �p̂x
2 / �2m��

=HL /4—readily follow from Eqs. �4� and �5�.

III. PROJECTION OPERATOR METHOD FOR PISTON
DYNAMICS

With use of a projection operator method �23,24� �see the
Appendix�, one can rewrite the equation of motion for

D̂�a , t ;�� in an exact form

FIG. 1. A piston and two rectangular boxes, each containing two
hard disks. The piston at X with momentum P can slide only along
the x direction.
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�D̂�a,t;��
�t

= da�
�a,a��D̂�a�,t;��

− da�
0

t

ds��a,a�,t − s�D̂�a�,s;�� + N̂�a,t� ,

�6�

where �da� means integration over the four macrovariables

and Eq. �6� is obtained by setting Âi�t� equal to ��â�t ;��
−a� in Eq. �A13�.

From Eqs. �A3� and �A11�, the frequency matrix 
�a ,a��
and the damping matrix ��a ,a� , t� are written as follows:


�a,a�� = da��LD̂�a;��,D̂�a�;����D̂,D̂�−1�a�,a�� ,

�7�

��a,a�,t� = da��N̂�a,t�,N̂�a����D̂,D̂�−1�a�,a�� . �8�

Here �Â , B̂� denotes a microcanonical ensemble average

of ÂB̂, �ÂB̂�, D̂�a ;��� D̂�a , t=0;��, and LD̂�a ;��
���D̂�a , t ;�� /�t� � t=0. The random “force” N̂�a�� N̂�a , t=0�
is defined by Eq. �A7� �23,24�:

N̂�a� = � �D̂�a,t;��
�t

�
t=0

− da�
�a,a��D̂�a�;��

� �1 − P�LD̂�a;�� . �9�

The projection operator P projects an arbitrary variable onto
the space whose element is expressed as a linear combination

of D̂�a ;�� in the form �da�Q�a��D̂�a� ;�� with Q�a� denot-
ing a linear coefficient which is a function of a. Finally we

note that N̂�a , t� evolves in time through a modified propa-
gator exp��1−P�Lt� instead of the natural one, exp�Lt�.

Let us calculate 
�a ,a�� and ��a ,a� , t� following the
definitions �7� and �8�. Calculations are mostly trivial, and
only some aspects including �elastic� collisions will be
touched upon. From the relation

LD̂�a;�� = −
P̂

M
�XD̂�a;�� − F̂�PD̂�a;�� − ŴL�HL

D̂�a;��

− ŴR�HR
D̂�a;�� � Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4, �10�

with F̂�dP̂ /dt, ŴL�dĤL /dt, and ŴR�dĤR /dt, it is evident
that 
�a ,a�� consists of four contributions, each coming

from Ĉi�i=1, . . . ,4�. Ĉ1 is seen to give

� da�
�a,a��D̂�a�;���
1

= −
P

M
�XD̂�a;�� . �11�

The contribution of Ĉ2 is obtained by first expressing the

time derivative dP̂ /dt by �P /�t= �2Mp̂x−2mP̂� / ��m
+M��t� where a collision between the piston with momen-
tum P and a hard disk with momentum px in time �t is
considered. Since a piston can collide with a hard disk on
both sides of the piston, we have

� da�
�a,a��D̂�a�;���
2

= − �PD̂�a;���FL�a� + FR�a�� ,

�12�

with

FL�a� =
2mML�X − d/2�

m + M


L

dpx� px

m
−

P

M
�2

feq�px�HL�

�13�

and FR�a� is similarly defined. FL�a� denotes an average
force on the piston due to collisions with hard disks in the
left box. L�x��d /2�x�X−d /2� denotes the �one-
dimensional� hard-disk density, and L�X−d /2� is the contact

FIG. 2. Distribution functions of �a� X and �b� P. Theoretical
predictions based on Eqs. �3� and �4� and numerical results from
molecular dynamics experiments are plotted by solid curves and
solid circles, respectively. Parameters are chosen as H=18, M
=100, Lx=15, and Ly =3.
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density with the piston. �L�R� means that the range of px is
limited to �px /m− P /M��0��0�.

L�X−d /2� is generally related to the pressure pL�X ,HL�
by �25�

pL�X,HL� = TLL�X −
d

2
� , �14�

with TL�HL /2. Since pL�X ,HL� is given by

pL�X,HL� = TL
� ln Z2�X,Ly�

�X
, �15�

we obtain

L�X − d/2� =
� ln Z2�X,Ly�

�X
. �16�

L�x� and R�x��X+d /2�x�Lx−d /2� are spatially inhomo-
geneous �20�, highest at the wall.

The contribution from Ĉ3 and Ĉ4 can be similarly calcu-

lated. Thus we express dĤL /dt as �ĤL /�t with �ĤL
=2�Mpx

2+ �M −m�pxP−mP2� / �M +m�2 denoting the incre-
ment of the piston’s kinetic energy due to collision with a
hard disk. Taking into account the collision frequency as we
did in deriving Eq. �13�, we have

� da�
�a,a��D̂�a�;���
3+4

= − �HL
D̂�a;��WL�a�

− �HR
D̂�a;��WR�a� ,

�17�

with

WL�a� =
2L�X − d/2�

�m + M�2 
L

dpx�− Mpx
2 − �M − m�pxP + mP2�

�� px

m
−

P

M
� feq�px�HL� �18�

being an average rate of change of ĤL due to collision with
the piston. A similar expression holds for WR�a�.

Now we turn to the damping matrix ��a ,a� , t�, Eq. �8�,
which is to be neglected in numerical computations in the

next section. First we note that the noise N̂�a� is expressed
from Eqs. �9�, �11�, �12�, and �17� as

N̂�a� = − �PD̂�a;���F̂ − FR�a� − FL�a��

− �HL
D̂�a;���ŴL − WL�a��

− �HR
D̂�a;���ŴR − WR�a��

� Â1 + Â2 + Â3. �19�

If we neglect cross correlation functions such as

�Â1�t�Â2�0��, which naturally occurs in Eq. �A11�, and cor-
relations between successive collisions between the piston
and a hard disk �assumption of molecular chaos�, we can
show that A1 gives rise to

� da�
0

t

ds��a,a�,t − s�D̂�a�,s;���
1

= − �P�P�a�Deq�a��P� D̂�a,t;��
Deq�a�

� � B̂1, �20�

with

�P�a� = � 2mM

m + M
�2�L�X −

d

2
�

L

dpx� px

m
−

P

M
�3

feq�px�HL�

+ L�X +
d

2
�

R

dpx� P

M
−

px

m
�3

feq�px�HR�� . �21�

Similarly we see that

� da�
0

t

ds��a,a�,t − s�D̂�a�,s;���
2+3

= − �HL
�HL

�a�Deq�a��HL
� D̂�a,t;��

Deq�a�
�

− �HR
�HR

�a�Deq�a��HR
� D̂�a,t;��

Deq�a�
� � B̂2 + B̂3,

�22�

with

�HL
�a� = L�X −

d

2
�� 2

m + M
�2

L

dpx

��mP2 − �M − m�pxP − Mpx
2�2� px

m
−

P

M
� feq�px�HL�

�23�

and a similar expression for �HR
�a�.

If Eq. �6� is averaged over an initial distribution f�� , t
=0� in the � space, which depends on � only through â, one

can safely neglect the noise N̂�a , t� �23,24� in Eq. �6� and we

finally arrive at, with D�a , t�=�d�D̂�a , t ;��f�� , t=0�,

�D�a,t�
�t

= �−
P

M
�X − �P�FL�a� + FR�a�� − �HL

WL�a�

− �HR
WR�D�a,t� + B1 + B2 + B3, �24�

where D̂�a , t ;�� in Eqs. �20� and �22� is replaced by D�a , t�
in Bi �i=1,2 ,3� in Eq. �24�.

The Fokker-Planck equation �24� �26� consists of terms
with first-order differential operators, representing streaming
terms coming from the frequency matrix 
�a ,a��, Eq. �7�,
and terms with second-order differential operators in B1
+B2+B3 coming from the damping matrix, Eq. �8�. It is
noted that our 
�a ,a�� given above is exact. On the other
hand, to calculate ��a ,a� , t� we neglected cross-correlation
functions and dynamical correlations resulting from succes-
sive collisions among the piston, the hard disks, and walls.
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Since the damping coefficients �P�a�, Eq. �21�, �HL�R�
, Eq.

�23�, and the equilibrium distribution function Deq�a�, Eq.
�2�, are complicated functions of a, solving the Fokker-
Planck equation, a partial differential equation with 5 space-
time variables numerically is beyond our ability. Also it is
noted that even if we contend ourselves by solving some
�lower-order� moment equations derived from the Fokker-
Planck equation, like the 13-moment method by Grad for the
Boltzmann equation �27�, we still cannot obtain a closed set
of equations without introducing serious approximations,
which obscures what we do to analyze the Fokker-Planck
equation. From these we will simply neglect the second-
order diffusion part of the Fokker-Planck equation and solve
the first-order partial differential equation, which is equiva-
lent, as is well known, to a �generally nonlinear� set of dif-
ferential equations for a.

IV. RESULTS AND DISCUSSIONS

Based on the remark given at the end of the previous
section, we consider the following set of ordinary differential
equations:

dX�t�
dt

=
P

M
, �25�

dP�t�
dt

= FL�a� + FR�a� , �26�

dHL

dt
= WL�a�,

dHR

dt
= WR�a� . �27�

The set of equations �25�–�27� is highly nonlinear, and we
have solved it numerically. At this point we note that this set
of equations does not satisfy the conservation of energy
d�P2 / �2M�+HL+HR� /dt=0. In our studies on relaxation to
equilibrium, a similar situation was encountered and we fol-
low the same procedure employed in �19�. That is, to deter-
mine X, P, HL, and HR as functions of t we always use Eqs.
�25� and �26� and �P2 / �2M�+HL+HR�=H. We need one
more equation, for which we employ the first one and the
second one of Eq. �27� alternatively.

For molecular dynamics experiments, the initial condi-
tions of r̂i�0� �i=1, . . . ,4� are chosen from uniformly distrib-
uted random numbers. In the process of preparing the initial
conditions, if a certain disk—say, i=2—overlaps the disk i
=1, then we choose r̂2�0� again by the same method until no
overlapping is achieved. The � ��=x or y� component of
p̂i�0� �i=1,2� is put as KLui,�, where ui,� is a random number
distributed uniformly between −1 and 1, and KL is chosen to
satisfy the initial condition HL=KL

2�i�ui,x
2 +ui,y

2 � /2m. Simi-
larly we choose p̂i�0� �i=3,4�.

In Fig. 3 we depict X�t� in a short �Fig. 3�a�� and a long
�Fig. 3�b�� time scale for the case M =100, Lx=15, and Ly
=3. The initial condition for slow variables is set to be
X�0�=Lx /4, P�0�=0, HL�0�=12, and HR�0�=6. Theoretical
results are obtained by solving Eqs. �25�–�27� under the ini-
tial condition above. It is naturally conceived that slow vari-

ables evolve more slowly as M increases and relaxation in
each box is expected to become more rapid as the density in
the box increases. From these, we expect that the quasiequi-
librium assumption becomes more appropriate in the case
where M is large and Lx is small. To see this aspect of the
parameter dependence, X�t� for the case M =104 and Lx=6,
which is more favorable for satisfaction of the quasiequilib-
rium assumption than the case of Fig. 3, is shown in Fig. 4 in
a short �Fig. 4�a��, a long �Fig. 4�b��, and a very long �Fig.
4�c�� time scale. Compared with Fig. 3, Fig. 4 shows that Eq.
�25�–�27� reproduces results of numerical experiments more
satisfactorily as was expected.

In Fig. 5, we show time evolution of HL and HR for the
system studied in Fig. 4. Although oscillatory behaviors of
HL�t� and HR�t�, shown in the insets, are fairly well repro-
duced by our theory, we observe that our theory overesti-
mates HL�t=�� and HR�t=�� by 1. This results from the fact
that our theory, Eqs. �25�–�27�, neglects effects of fluctua-
tions and P�t=��=0 instead of �P2�t=�� / �2M��=2.

We next consider pressure on the piston. The time evolu-
tion of the pressure on the piston due to particles in the left
�right� box, denoted by pL�R��X ,HL�R��, is shown in Fig. 6. In
the theoretical calculation, pL�X ,HL� is given by Eq. �15�. On
the other hand, in the simulation, pL�X ,HL� is obtained as a

FIG. 3. X�t� from theory �dotted curves� and computer experi-
ments �solid curves� for the case M =100, m=1, Lx=15, and Ly =3.
The initial condition is chosen to be X�0�=Lx /4, P�0�=0, HL�0�
=12, and HR�0�=6.
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short-time average of the pressure exerted on the piston by
hard disks in the left compartment. pR�X ,HR� can be ob-
tained similarly. Initially pL(X�0� ,HL�0�)=8.32 is quite dif-
ferent from pR(X�0� ,HR�0�)=0.68 and the piston starts mov-
ing to the direction of the box with lower pressure and
overshoots, resulting in the oscillations �insets�. As the sys-
tem approaches a mechanical equilibrium state the difference
in pressure becomes very small and the oscillation becomes

no longer visible. In view of the fact that our theory has no
adjustable parameters, we may say that it can reproduce the
experimental results well.

Let us discuss the dynamics of the piston semiquantita-
tively based on the mass-ratio expansion, which has been
playing important roles for studies of an adiabatic piston
�4–6�. In Eq. �13� we note that the range of integration
�L dpx is �2mHL� px�mP /M. Since P may be considered
to be of order �M, we put �=1/�M and FL and FR can be
easily expanded in �. Technically one expresses �L dpx as
�0

�2mHL −�0
mP/M and the second term is easily Taylor expanded

in mP /M �O���. Following these procedures we have for-
mally an expansion

dP

dt
= F0 + F1 + F2 + ¯ , �28�

where Fn represents the terms of order �n.
Let us first consider the piston dynamics to O��0�,

F0 =
M

m + M
�L�X −

d

2
�TL − R�X +

d

2
�TR�

�
M

m + M
�pL�X,HL� − pR�X,HR��Ly , �29�

where TL�R��HL�R� /2 and we use Eq. �14� to obtain the last

FIG. 4. X�t� from theory �dotted curves� and computer experi-
ments �solid curves� for the case M =10000, m=1, Lx=6, and Ly

=3. The initial conditions for slow variables are the same as those
in Fig. 3.

FIG. 5. HL�t� and HR�t� from theory �dotted curves� and com-
puter experiments �solid curves� for the system treated in Fig. 4: �a�
HL�t� and �b� HR�t�.
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expression. Similarly we expand WL�R��a� in Eq. �25� to first
order in �:

dHL

dt
= −

MPLypL�X,HL�
�m + M�2 ,

dHR

dt
=

MPLypR�X,HR�
�m + M�2 .

�30�

In Fig. 7 we show X�t� obtained from Eqs. �25� and �28�–
�30� in which m+M is approximated by M for the system
studied in Fig. 4. X�t� thus obtained oscillates without damp-
ing, and its oscillation period is in agreement with one ob-
tained from Eqs. �25�–�27�. However, we see that the system
can not relax to a mechanical or thermal equilibrium state.

To O��1� we have

F1 = − �P, � =
4

m + M�L
0

�2mHL

dpxpxfeq�px�HL�

+ R
0

�2mHR

dpxpxfeq�px�HR�� . �31�

Thus we see that it takes time �at least� of order 1 /�2 for
relaxation to equilibrium and this is much longer than the
oscillation period �osc�1/�. Finally to O��2� we have

F2 = �L − R�P2� m

M2�
= � pL�X,HL�

TL
−

pR�X,HR�
TR

�LyP2� m

M2� . �32�

This shows that the piston moves in the direction of hotter
box after mechanical equilibrium is established through
pL�X ,HL�= pR�X ,HR�. This result is well known for an “adia-
batic” piston, and simulation results in Figs. 3 and 4 are
consistent with Eq. �32�.

As a function of the number of hard disks, nL, and the
energy HL in the left box, the momentum distribution func-
tion feq�px �HL� is generally expressed as �28,29�

feq�px�HL� =
��nL�

�2m	HL�1/2��nL − 1/2��1 −
px

2

2mHL
�nL−3/2

,

�33�

where ��x� is a gamma function. In the limit nL→� with
fixed HL /nL, Eq. �33� becomes Maxwellian,

feq�px�HL� =
exp��px�2/�2mTL��

�2	mTL�1/2 , �34�

with TL /2=HL / �2nL�. This applies also for feq�px �HR�. If we
expand FL+FR in terms of the smallness parameter �
�1/�M just as we did above, it is confirmed straightfor-
wardly that the systematic force FL+FR on the piston has
precisely the expansion obtained before �5� by the method of
Van Kampen �30�. Thus we notice that the general expres-
sion �13� for the �average� force on the piston gives a concise
explanation for directional �to a hotter region� movement of
an adiabatic piston.

In this paper we derived the Fokker-Planck equation �24�
with the exact partition function Z2 fully taken into account.
We calculated the streaming terms exactly and the diffusion
terms approximately neglecting cross correlation functions
and effects of correlations among successive collisions in the
system. The streaming or systematic terms, which corre-

FIG. 6. pL�t� and pR�t� from theory �dotted curves� and com-
puter experiments �solid curves� for the system treated in Fig. 4: �a�
pL�t� and �b� pR�t�.

FIG. 7. X�t� obtained from Eqs. �29� and �30� �dashed curve� for
the system treated in Fig. 4. Solid and dotted curves are the same as
those in Fig. 4.
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spond to the Euler equation for hydrodynamics, reproduce
experimental results fairly well as shown in Figs. 3–6. The
diffusion terms, which were left untouched, deserve careful
studies in view of our recent work on an adiabatic piston
where molecular dynamics simulations are compared with a
Langevin equation �19�.
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APPENDIX: MORI’S THEORY FOR A MICROCANONICAL
ENSEMBLE

Let us first consider time evolution of a dynamical vari-

able Â�t�,

dÂ�t�
dt

= LÂ�t�, Â�t� = exp�Lt�Â�0� , �A1�

where L represents a Liouville operator for a Hamiltonian

system with �time-independent� Hamiltonian Ĥ. It is noted

that L operates on the initial phase � at time t=0. Thus Â�t�
is considered to a function of both time t and �, which is not
explicitly written here. Introducing a projection operator P
by PB̂= �B̂Â�0���Â�0�Â�0��−1Â�0� with �X̂� denoting a micro-

canonical average �X̂�=Z−1�d�X̂��Ĥ−H�, we have, with Q
=1−P,

dÂ�t�
dt

= exp�Lt��PLÂ�0� + QLÂ�0�� . �A2�

The first term on the right-hand side �RHS� of Eq. �A2� is
rewritten as

exp�tL��LÂ�0�Â�0���Â�0�Â�0��−1Â�0�

= �LÂ�0�Â�0���Â�0�Â�0��−1Â�t� � 
Â�t� , �A3�

where we note that exp�tL�C=C exp�tL� when C is a con-
stant.

If we use the fact L=PL+QL and define L1�PL, L2
�QL, it is readily checked that

exp�tL� = exp�tL2� + 
0

t

ds exp��t − s�L�L1 exp�sL2� .

�A4�

This is used to transform the second term on the RHS of Eq.
�A2� to

�exp�tL2� + 
0

t

ds exp��t − s�L�L1 exp�sL2��QLÂ�0�

= N̂�t� + 
0

t

ds exp��t − s�L�L1N̂�s� , �A5�

where we define N̂�t� by

N̂�t� � exp�tL2�N̂�0� �A6�

with

N̂�0� � QLÂ�0� = LÂ�0� − 
Â�0� . �A7�

It is noticed that L1N̂�s� in Eq. �A5� is readily written as

L1N̂�s� = �LN̂�s�Â�0���Â�0�Â�0��−1Â�0� . �A8�

If one notes that L is expressed in terms of a pair of

Poisson brackets with Ĥ and L��Ĥ−H�=0, we obtain using
partial integration that

�LN̂�s�Â�0�� = − �N̂�s�LÂ�0�� = − �N̂�s�N̂�0�� , �A9�

where we used the fact that N̂�s� is orthogonal to Â�0�.
From the above we have

dÂ�t�
dt

= 
Â�t� − 
0

t

ds��t − s�Â�s� + N̂�t� , �A10�

where the damping function ��t� is defined by

��t� � �N̂�t�N̂�0���Â�0�Â�0��−1. �A11�

If Â is a �column� vector with N components—i.e., Â

= �Â1 , . . . , ÂN�T—the projection operator P is introduced by

PB̂ = �
i,j

�B̂Âi�0����Â�0�Â�0��−1�i,jÂj �A12�

and Eq. �A10� for ith component �i=1, . . . ,N� of Â is written
as

dÂi�t�
dt

= �
j


i,jÂj�t� − �
j


0

t

ds�i,j�t − s�Âj�s� + N̂i�t� ,

�A13�

with 
 and ��t� being an N�N matrix—e.g., 
i,j

=�k�LÂiÂk���Â�0�Â�0��−1�k,j. Finally, if Â is labeled not by a

discrete index i but by a continuous parameter like Aa=��Â
−a� with −��a��, we may simply replace �i by �da in
Eq. �A13�.
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